中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(5篇)

格式:DOC 上傳日期:2023-04-01 09:44:19
中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(5篇)
時(shí)間:2023-04-01 09:44:19     小編:admin

總結(jié)是對(duì)某一特定時(shí)間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標(biāo)更加明確,讓我們一起來學(xué)習(xí)寫總結(jié)吧。怎樣寫總結(jié)才更能起到其作用呢?總結(jié)應(yīng)該怎么寫呢?以下是小編精心整理的總結(jié)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇一

①位置的確定與平面直角坐標(biāo)系

位置的確定

坐標(biāo)變換

平面直角坐標(biāo)系內(nèi)點(diǎn)的特征

平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置

對(duì)稱問題:p(x,y)→q(x,- y)關(guān)于x軸對(duì)稱p(x,y)→q(- x,y)關(guān)于y軸對(duì)稱p(x,y)→q(- x,-y)關(guān)于原點(diǎn)對(duì)稱

變量、自變量、因變量、函數(shù)的定義

函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢描述

②一次函數(shù)與正比例函數(shù)

一次函數(shù)的定義與正比例函數(shù)的定義

一次函數(shù)的圖象:直線,畫法

一次函數(shù)的性質(zhì)(增減性)

一次函數(shù)y=kx+b(k≠0)中k、b符號(hào)與圖象位置

待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)

一次函數(shù)的平移問題

一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)

一次函數(shù)的實(shí)際應(yīng)用

一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇二

(1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

(2)梯形中位線定義:連接梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

注意(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連接一頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段,而三角形中位線是連接三角形兩邊中點(diǎn)的線段。

(2)梯形的中位線是連接兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

(3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)三角形的中位線就變成梯形的中位線。

(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

(2)梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.

三角形有三條中位線,首尾相接時(shí),每個(gè)小三角形面積都等于原三角形的四分之一,這四個(gè)三角形都互相全等。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇三

分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡.

分式混合運(yùn)算法則:

分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);

乘法進(jìn)行化簡,因式分解在先,分子分母相約,然后再行運(yùn)算;

加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;

變號(hào)必須兩處,結(jié)果要求最簡.

二次根式的加減法

知識(shí)點(diǎn)1:同類二次根式

(ⅰ)幾個(gè)二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。

(ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數(shù)是否相同。(2)幾個(gè)二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關(guān),而與根號(hào)外的因式無關(guān)。

知識(shí)點(diǎn)2:合并同類二次根式的方法

合并同類二次根式的理論依據(jù)是逆用乘法對(duì)加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。

知識(shí)點(diǎn)3:二次根式的加減法則

二次根式相加減先把各個(gè)二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。

知識(shí)點(diǎn)4:二次根式的混合運(yùn)算方法和順序

運(yùn)算方法是利用加、減、乘、除法則以及與多項(xiàng)式乘法類似法則進(jìn)行混合運(yùn)算。運(yùn)算的順序是先乘方,后乘除,最后加減,有括號(hào)的先算括號(hào)內(nèi)的。

知識(shí)點(diǎn)5:二次根式的加減法則與乘除法則的區(qū)別

乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無關(guān),加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡根式。

★重點(diǎn)★解直角三角形

☆內(nèi)容提要☆

一、三角函數(shù)

1.定義:在rt△abc中,∠c=rt∠,則sina=;cosa=;tga=;ctga=.

2.特殊角的三角函數(shù)值:

0°30°45°60°90°

sinα

cosα

tgα/

ctgα/

3.互余兩角的三角函數(shù)關(guān)系:sin(90°-α)=cosα;…

4.三角函數(shù)值隨角度變化的關(guān)系

5.查三角函數(shù)表

二、解直角三角形

1.定義:已知邊和角(兩個(gè),其中必有一邊)→所有未知的邊和角。

2.依據(jù):①邊的關(guān)系:

②角的關(guān)系:a+b=90°

③邊角關(guān)系:三角函數(shù)的定義。

注意:盡量避免使用中間數(shù)據(jù)和除法。

三、對(duì)實(shí)際問題的處理

1.俯、仰角:2.方位角、象限角:3.坡度:4.在兩個(gè)直角三角形中,都缺解直角三角形的條件時(shí),可用列方程的辦法解決。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇四

考核要求:

〔 1〕理解必然事件、不可能事件、隨機(jī)事件的概念,知道確定事件與必然事件、不可能事件的關(guān)系;

〔 2〕能區(qū)分簡單生活事件中的必然事件、不可能事件、隨機(jī)事件。

考核要求:

〔 1〕知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機(jī)事件發(fā)生的可能事件的大小并排出大小順序;

〔 2〕知道概率的含義和表示符號(hào),了解必然事件、不可能事件的概率和隨機(jī)事件概率的取值范圍;

〔3〕理解隨機(jī)事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會(huì)根據(jù)大數(shù)次試驗(yàn)所得頻率估計(jì)事件的概率。

〔1〕在給可能性的大小排序前可先用〝一定發(fā)生〞、〝很有可能發(fā)生〞、 〝可能發(fā)生〞、〝不太可能發(fā)生〞、〝一定不會(huì)發(fā)生〞等詞語來表述事件發(fā)生的可能性的大??;

〔 2〕事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗(yàn)的次數(shù)的多少有關(guān),只有當(dāng)試驗(yàn)次數(shù)足夠大時(shí)才能更精確。

考核要求

〔1〕理解等可能試驗(yàn)的概念,會(huì)用等可能試驗(yàn)中事件概率計(jì)算公式來計(jì)算簡單事件的概率;

〔2〕會(huì)用枚舉法或畫〝樹形圖〞方法求等可能事件的概率,會(huì)用區(qū)域面積之比解決簡單的概率問題;

〔3〕形成對(duì)概率的初步認(rèn)識(shí),了解機(jī)會(huì)與風(fēng)險(xiǎn)、規(guī)那么公平性與決策合理性等簡單概率問題。

〔1〕計(jì)算前要先確定是否為可能事件;

〔2〕用枚舉法或畫〝樹形圖〞方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考核要求:

〔1〕知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調(diào)查這兩種收集數(shù)據(jù)的方法及其區(qū)別;

〔2〕結(jié)合有關(guān)代數(shù)、幾何的內(nèi)容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關(guān)信息。

考核要求:

〔1〕知道統(tǒng)計(jì)的意義和一般研究過程;

〔2〕認(rèn)識(shí)個(gè)體、總體和樣本的區(qū)別,了解樣本估計(jì)總體的思想方法。

考核要求:

〔1〕理解平均數(shù)、加權(quán)平均數(shù)的概念;

〔2〕掌握平均數(shù)、加權(quán)平均數(shù)的計(jì)算公式。注意:在計(jì)算平均數(shù)、加權(quán)平均數(shù)時(shí)要防止數(shù)據(jù)漏抄、重抄、錯(cuò)抄等錯(cuò)誤現(xiàn)象,提高運(yùn)算準(zhǔn)確率。

考核要求:

〔 1〕知道中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差的概念;

〔 2〕會(huì)求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標(biāo)準(zhǔn)差,并能用于解決簡單的統(tǒng)計(jì)問題。

〔1〕當(dāng)一組數(shù)據(jù)中出現(xiàn)極值時(shí),中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;

〔2〕求中位數(shù)之前必須先將數(shù)據(jù)排序。

〔 1〕理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關(guān)系式;

〔2〕會(huì)畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關(guān)的實(shí)際問題。解題時(shí)要注意:頻數(shù)、頻率能反映每個(gè)對(duì)象出現(xiàn)的頻繁程度,但也存在差別:在同一個(gè)問題中,頻數(shù)反映的是對(duì)象出現(xiàn)頻繁程度的絕對(duì)數(shù)據(jù),所有頻數(shù)之和是試驗(yàn)的總次數(shù);頻率反映的是對(duì)象頻繁出現(xiàn)的相對(duì)數(shù)據(jù),所有的頻率之和是1。

〔1〕了解基本統(tǒng)計(jì)量〔平均數(shù)、眾數(shù)、中位數(shù)、方差、標(biāo)準(zhǔn)差、頻數(shù)、頻率〕的意計(jì)算及其應(yīng)用,并掌握其概念和計(jì)算方法;

〔2〕正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計(jì)算結(jié)果作出判斷和預(yù)測;

〔3〕能將多個(gè)圖表結(jié)合起來,綜合處理圖表提供的數(shù)據(jù),會(huì)利用各種統(tǒng)計(jì)量來進(jìn)行推理和分析,

要練說,得練看??磁c說是統(tǒng)一的,看不準(zhǔn)就難以說得好。練看,就是訓(xùn)練幼兒的`觀察能力,擴(kuò)大幼兒的認(rèn)知范圍,讓幼兒在觀察事物、觀察生活、觀察自然的活動(dòng)中,積累詞匯、理解詞義、發(fā)展語言。在運(yùn)用觀察法組織活動(dòng)時(shí),我著眼觀察于觀察對(duì)象的選擇,著力于觀察過程的指導(dǎo),著重于幼兒觀察能力和語言表達(dá)能力的提高。

單靠〝死〞記還不行,還得〝活〞用,姑且稱之為〝先死后活〞吧。讓學(xué)生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實(shí)感,篇幅可長可短,并要求運(yùn)用積累的成語、名言警句等,定期檢查點(diǎn)評(píng),選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即鞏固了所學(xué)的材料,又鍛煉了學(xué)生的寫作能力,同時(shí)還培養(yǎng)了學(xué)生的觀察能力、思維能力等等,達(dá)到〝一石多鳥〞的效果。研究解決有關(guān)的實(shí)際生活中問題,然后作出合理的解決。

一般說來,〝教師〞概念之形成經(jīng)歷了十分漫長的歷史。楊士勛〔唐初學(xué)者,四門博士〕 ?春秋谷梁傳疏?曰:〝師者教人以不及,故謂師為師資也〞。

這兒的〝師資〞,其實(shí)就是先秦而后歷代對(duì)教師的別稱之一。

韓非子也有云:“今有不才之子?…師長教之弗為變〃其“師長〃當(dāng)然也指教師。這兒的〝師資〞和〝師長〞可稱為〝教師〞概念的雛形,但仍說不上是名副其實(shí)的〝教師〞,因?yàn)楱斀處煥暠仨氁忻鞔_的傳授知識(shí)的對(duì)象和本身明確的職責(zé)。

中考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)篇五

倒數(shù)關(guān)系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關(guān)系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關(guān)系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函數(shù)關(guān)系六角形記憶法

構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

倒數(shù)關(guān)系

對(duì)角線上兩個(gè)函數(shù)互為倒數(shù);

商數(shù)關(guān)系

六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個(gè)也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

平方關(guān)系

在帶有陰影線的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

銳角角a的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角a的銳角三角函數(shù)。

正弦(sin)等于對(duì)邊比斜邊;sina=a/c

余弦(cos)等于鄰邊比斜邊;cosa=b/c

正切(tan)等于對(duì)邊比鄰邊;tana=a/b

余切(cot)等于鄰邊比對(duì)邊;cota=b/a

正割(sec)等于斜邊比鄰邊;seca=c/b

余割(csc)等于斜邊比對(duì)邊。csca=c/a

互余角的三角函數(shù)間的關(guān)系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方關(guān)系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

積的關(guān)系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒數(shù)關(guān)系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

1、反比例函數(shù)的概念

一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù)。

2、反比例函數(shù)的圖像

反比例函數(shù)的圖像是雙曲線,它有兩個(gè)分支,這兩個(gè)分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點(diǎn)對(duì)稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點(diǎn),即雙曲線的兩個(gè)分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。

3、反比例函數(shù)的性質(zhì)

反比例函數(shù)k的符號(hào)k>0k<0圖像yo xyo x性質(zhì)①x的取值范圍是x0,

y的取值范圍是y0;

②當(dāng)k>0時(shí),函數(shù)圖像的兩個(gè)分支分別

在第一、三象限。在每個(gè)象限內(nèi),y

隨x 的增大而減小。

①x的取值范圍是x0,

y的取值范圍是y0;

②當(dāng)k<0時(shí),函數(shù)圖像的兩個(gè)分支分別

在第二、四象限。在每個(gè)象限內(nèi),y

隨x 的增大而增大。

4、反比例函數(shù)解析式的確定

確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個(gè)待定系數(shù),因此只需要一對(duì)對(duì)應(yīng)值或圖像上的一個(gè)點(diǎn)的坐標(biāo),即可求出k的值,從而確定其解析式。

5、反比例函數(shù)的幾何意義

設(shè)是反比例函數(shù)圖象上任一點(diǎn),過點(diǎn)p作軸、軸的垂線,垂足為a,則

(1)△opa的面積.

(2)矩形oapb的面積。這就是系數(shù)的幾何意義.并且無論p怎樣移動(dòng),△opa的面積和矩形oapb的面積都保持不變。

矩形pcef面積=,平行四邊形pdea面積=

【本文地址:http://gzsthw.cn/zuowen/2077566.html】

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔